Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Biophys Res Commun ; 561: 14-18, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1225147

ABSTRACT

In spite of numerous studies, many details of SARS-Cov-2 interaction with human cells are still poorly understood. The 674-685 fragment of SARS-Cov-2 spike protein is homologous to the fragment of α-cobratoxin underlying its interaction with α7 nicotinic acetylcholine receptors (nAChRs). The interaction of 674-685 peptide with α7 nAChR has been predicted in silico. In the present paper we confirm this prediction experimentally and investigate the effect of SARS-Cov-2 spike protein peptide on mitochondria, which express α7 nAChRs to regulate apoptosis-related events. We demonstrate that SARS-Cov-2 spike protein peptide 674-685 competes with the antibody against 179-190 fragment of α7 nAChR subunit for the binding to α7-expressing cells and mitochondria and prevents the release of cytochrome c from isolated mitochondria in response to 0.5 mM H2O2 but does not protect intact U373 cells against apoptogenic effect of H2O2. Our data suggest that the α7 nAChR-binding portion of SARS-Cov-2 spike protein prevents mitochondria-driven apoptosis when the virus is uncoated inside the cell and, therefore, supports the infected cell viability before the virus replication cycle is complete.


Subject(s)
Apoptosis , Cytochromes c/metabolism , Mitochondria/metabolism , Peptide Fragments/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Computer Simulation , Female , Hydrogen Peroxide/pharmacology , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , alpha7 Nicotinic Acetylcholine Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL